cat/src/Cat/Categories/Cat.agda

175 lines
6.7 KiB
Agda
Raw Normal View History

{-# OPTIONS --cubical --allow-unsolved-metas #-}
module Cat.Categories.Cat where
open import Agda.Primitive
open import Cubical
open import Function
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
open import Cat.Category
open import Cat.Functor
2018-01-21 14:03:00 +00:00
-- Tip from Andrea:
-- Use co-patterns - they help with showing more understandable types in goals.
lift-eq : {} {A B : Set } {a a' : A} {b b' : B} a a' b b' (a , b) (a' , b')
fst (lift-eq a b i) = a i
snd (lift-eq a b i) = b i
2018-01-21 14:03:00 +00:00
eqpair : {a b} {A : Set a} {B : Set b} {a a' : A} {b b' : B}
a a' b b' (a , b) (a' , b')
eqpair eqa eqb i = eqa i , eqb i
open Functor
open Category
module _ { ' : Level} {A B : Category '} where
lift-eq-functors : {f g : Functor A B}
2018-01-21 18:23:24 +00:00
(eq* : f .func* g .func*)
(eq→ : PathP (λ i {x y} A .Arrow x y B .Arrow (eq* i x) (eq* i y))
(f .func→) (g .func→))
-- → (eq→ : Functor.func→ f ≡ {!!}) -- Functor.func→ g)
-- Use PathP
-- directly to show heterogeneous equalities by using previous
-- equalities (i.e. continuous paths) to create new continuous paths.
(eqI : PathP (λ i {c : A .Object} eq→ i (A .𝟙 {c}) B .𝟙 {eq* i c})
(ident f) (ident g))
(eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
2018-01-21 18:23:24 +00:00
eq→ i (A ._⊕_ a' a) B ._⊕_ (eq→ i a') (eq→ i a))
(distrib f) (distrib g))
f g
lift-eq-functors eq* eq→ eqI eqD i = record { func* = eq* i ; func→ = eq→ i ; ident = eqI i ; distrib = eqD i }
-- The category of categories
module _ { ' : Level} where
private
module _ {A B C D : Category '} {f : Functor A B} {g : Functor B C} {h : Functor C D} where
2018-01-21 18:23:24 +00:00
eq* : func* (h ∘f (g ∘f f)) func* ((h ∘f g) ∘f f)
eq* = refl
eq→ : PathP
(λ i {x y : A .Object} A .Arrow x y D .Arrow (eq* i x) (eq* i y))
(func→ (h ∘f (g ∘f f))) (func→ ((h ∘f g) ∘f f))
eq→ = refl
id-l = (h ∘f (g ∘f f)) .ident -- = func→ (h ∘f (g ∘f f)) (𝟙 A) ≡ 𝟙 D
id-r = ((h ∘f g) ∘f f) .ident -- = func→ ((h ∘f g) ∘f f) (𝟙 A) ≡ 𝟙 D
postulate eqI : PathP
(λ i {c : A .Object} eq→ i (A .𝟙 {c}) D .𝟙 {eq* i c})
(ident ((h ∘f (g ∘f f))))
(ident ((h ∘f g) ∘f f))
postulate eqD : PathP (λ i { c c' c'' : A .Object} {a : A .Arrow c c'} {a' : A .Arrow c' c''}
eq→ i (A ._⊕_ a' a) D ._⊕_ (eq→ i a') (eq→ i a))
(distrib (h ∘f (g ∘f f))) (distrib ((h ∘f g) ∘f f))
-- eqD = {!!}
assc : h ∘f (g ∘f f) (h ∘f g) ∘f f
assc = lift-eq-functors eq* eq→ eqI eqD
module _ {A B : Category '} {f : Functor A B} where
lem : (func* f) (func* (identity {C = A})) func* f
lem = refl
-- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f
lemmm : PathP
(λ i
{x y : Object A} Arrow A x y Arrow B (func* f x) (func* f y))
(func→ (f ∘f identity)) (func→ f)
lemmm = refl
postulate lemz : PathP (λ i {c : A .Object} PathP (λ _ Arrow B (func* f c) (func* f c)) (func→ f (A .𝟙)) (B .𝟙))
(ident (f ∘f identity)) (ident f)
-- lemz = {!!}
postulate ident-r : f ∘f identity f
-- ident-r = lift-eq-functors lem lemmm {!lemz!} {!!}
postulate ident-l : identity ∘f f f
-- ident-l = lift-eq-functors lem lemmm {!refl!} {!!}
2018-01-21 14:23:40 +00:00
Cat : Category (lsuc ( ')) ( ')
Cat =
record
{ Object = Category '
; Arrow = Functor
; 𝟙 = identity
; _⊕_ = _∘f_
-- What gives here? Why can I not name the variables directly?
2018-01-21 18:23:24 +00:00
; isCategory = record
{ assoc = λ {_ _ _ _ f g h} assc {f = f} {g = g} {h = h}
; ident = ident-r , ident-l
}
}
module _ { : Level} (C D : Category ) where
private
:Object: = C .Object × D .Object
:Arrow: : :Object: :Object: Set
:Arrow: (c , d) (c' , d') = Arrow C c c' × Arrow D d d'
:𝟙: : {o : :Object:} :Arrow: o o
:𝟙: = C .𝟙 , D .𝟙
_:⊕:_ :
{a b c : :Object:}
:Arrow: b c
:Arrow: a b
:Arrow: a c
_:⊕:_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) (C ._⊕_) bc∈C ab∈C , D ._⊕_ bc∈D ab∈D}
instance
:isCategory: : IsCategory :Object: :Arrow: :𝟙: _:⊕:_
:isCategory: = record
{ assoc = eqpair C.assoc D.assoc
; ident
= eqpair (fst C.ident) (fst D.ident)
, eqpair (snd C.ident) (snd D.ident)
}
where
open module C = IsCategory (C .isCategory)
open module D = IsCategory (D .isCategory)
:product: : Category
:product: = record
{ Object = :Object:
; Arrow = :Arrow:
; 𝟙 = :𝟙:
; _⊕_ = _:⊕:_
}
2018-01-21 14:23:40 +00:00
proj₁ : Arrow Cat :product: C
proj₁ = record { func* = fst ; func→ = fst ; ident = refl ; distrib = refl }
2018-01-21 14:23:40 +00:00
proj₂ : Arrow Cat :product: D
proj₂ = record { func* = snd ; func→ = snd ; ident = refl ; distrib = refl }
2018-01-21 14:23:40 +00:00
module _ {X : Object (Cat {} {})} (x₁ : Arrow Cat X C) (x₂ : Arrow Cat X D) where
open Functor
-- ident' : {c : Object X} → ((func→ x₁) {dom = c} (𝟙 X) , (func→ x₂) {dom = c} (𝟙 X)) ≡ 𝟙 (catProduct C D)
-- ident' {c = c} = lift-eq (ident x₁) (ident x₂)
x : Functor X :product:
x = record
{ func* = λ x (func* x₁) x , (func* x₂) x
; func→ = λ x func→ x₁ x , func→ x₂ x
; ident = lift-eq (ident x₁) (ident x₂)
; distrib = lift-eq (distrib x₁) (distrib x₂)
}
-- Need to "lift equality of functors"
-- If I want to do this like I do it for pairs it's gonna be a pain.
2018-01-21 18:23:24 +00:00
postulate isUniqL : (Cat proj₁) x x₁
-- isUniqL = lift-eq-functors refl refl {!!} {!!}
2018-01-21 18:23:24 +00:00
postulate isUniqR : (Cat proj₂) x x₂
-- isUniqR = lift-eq-functors refl refl {!!} {!!}
2018-01-21 14:23:40 +00:00
isUniq : (Cat proj₁) x x₁ × (Cat proj₂) x x₂
isUniq = isUniqL , isUniqR
2018-01-21 14:23:40 +00:00
uniq : ∃![ x ] ((Cat proj₁) x x₁ × (Cat proj₂) x x₂)
uniq = x , isUniq
instance
2018-01-21 14:23:40 +00:00
isProduct : IsProduct Cat proj₁ proj₂
isProduct = uniq
2018-01-21 14:23:40 +00:00
product : Product { = Cat} C D
product = record
{ obj = :product:
; proj₁ = proj₁
; proj₂ = proj₂
}