cat/doc/cubical.tex

429 lines
15 KiB
TeX
Raw Normal View History

2018-05-02 15:02:46 +00:00
\chapter{Cubical Agda}
\section{Propositional equality}
2018-05-28 15:32:56 +00:00
Judgmental equality in Agda is a feature of the type system. It is
something that can be checked automatically by the type checker: In
the example from the introduction $n + 0$ can be judged to be equal to
$n$ simply by expanding the definition of $+$.
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
On the other hand, propositional equality is something defined within
the language itself. Propositional equality cannot be derived
automatically. The normal definition of propositional equality is an
2018-05-28 15:32:56 +00:00
inductive data type. Cubical Agda discards this type in favor of some
new primitives.
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
Most of the source code related with this section is implemented in
\cite{cubical-demo} it can be browsed in hyperlinked and syntax
highlighted HTML online. The links can be found in the beginning of
section \S\ref{ch:implementation}.
2018-05-08 14:22:51 +00:00
2018-05-02 15:02:46 +00:00
\subsection{The equality type}
2018-05-28 15:32:56 +00:00
The usual notion of judgmental equality says that given a type $A \tp
\MCU$ and two points hereof $a_0, a_1 \tp A$ we can form the type:
2018-05-02 15:02:46 +00:00
%
\begin{align}
a_0 \equiv a_1 \tp \MCU
\end{align}
%
2018-05-28 15:32:56 +00:00
In Agda this is defined as an inductive data type with the single
constructor $\refl$ that for any $a \tp A$ gives:
2018-05-02 15:02:46 +00:00
%
\begin{align}
\refl \tp a \equiv a
\end{align}
%
2018-05-09 16:13:36 +00:00
There also exist a related notion of \emph{heterogeneous} equality which allows
2018-05-02 15:02:46 +00:00
for equating points of different types. In this case given two types $A, B \tp
\MCU$ and two points $a \tp A$, $b \tp B$ we can construct the type:
%
\begin{align}
a \cong b \tp \MCU
\end{align}
%
2018-05-28 15:32:56 +00:00
This likewise has the single constructor $\refl$ that for any $a \tp
A$ gives:
2018-05-02 15:02:46 +00:00
%
\begin{align}
\refl \tp a \cong a
\end{align}
%
In Cubical Agda these two notions are paralleled with homogeneous- and
heterogeneous paths respectively.
%
\subsection{The path type}
2018-05-09 16:13:36 +00:00
Judgmental equality in Cubical Agda is encapsulated with the type:
2018-05-02 15:02:46 +00:00
%
2018-05-09 16:13:36 +00:00
\begin{equation}
2018-05-28 15:32:56 +00:00
\Path \tp (P \tp \I\MCU) → P\ 0 → P\ 1 → \MCU
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-28 15:32:56 +00:00
The special type $\I$ is called the index set. The index set can be
thought of simply as the interval on the real numbers from $0$ to $1$
(both inclusive). The family $P$ over $\I$ will be referred to as the
\nomenindex{path space} given some path $p \tp \Path\ P\ a\ b$. By
that token $P\ 0$ corresponds to the type at the left endpoint of $p$.
Likewise $P\ 1$ is the type at the right endpoint. The type is called
$\Path$ because the idea has roots in homotopy theory. The intuition
is that $\Path$ describes\linebreak[1] paths in $\MCU$. I.e.\ paths
between types. For a path $p$ the expression $p\ i$ can be thought of
as a \emph{point} on this path. The index $i$ describes how far along
the path one has moved. An inhabitant of $\Path\ P\ a_0\ a_1$ is a
(dependent) function from the index set to the path space:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-28 15:32:56 +00:00
p \tp \prod_{i \tp \I} P\ i
2018-05-02 15:02:46 +00:00
$$
%
This function must satisfy being judgmentally equal to $a_0$ at the
2018-05-28 15:32:56 +00:00
left endpoint and equal to $a_1$ at the other end. I.e.:
2018-05-02 15:02:46 +00:00
%
\begin{align*}
p\ 0 & = a_0 \\
p\ 1 & = a_1
2018-05-07 08:53:22 +00:00
\end{align*}
2018-05-02 15:02:46 +00:00
%
2018-05-15 14:08:29 +00:00
The notion of \nomenindex{homogeneous equalities} is recovered when $P$ does not
2018-05-28 15:32:56 +00:00
depend on its argument. That is for $A \tp \MCU$ and $a_0, a_1 \tp A$ the
2018-05-15 14:08:29 +00:00
homogenous equality between $a_0$ and $a_1$ is the type:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-28 15:32:56 +00:00
a_0 \equiv a_1 \defeq \Path\ (\lambda\;i \to A)\ a_0\ a_1
2018-05-02 15:02:46 +00:00
$$
%
2018-05-28 15:32:56 +00:00
I will generally prefer to use the notation $a \equiv b$ when talking
about non-dependent paths and use the notation $\Path\ (\lambda\; i
\to P\ i)\ a\ b$ when the path space is of particular interest.
2018-05-02 15:02:46 +00:00
With this definition we can recover reflexivity. That is, for any $A
\tp \MCU$ and $a \tp A$:
2018-05-02 15:02:46 +00:00
%
2018-05-08 00:00:23 +00:00
\begin{equation}
\begin{aligned}
2018-05-28 15:32:56 +00:00
\refl & \tp a \equiv a \\
\refl & \defeq \lambda\; i \to a
2018-05-08 00:00:23 +00:00
\end{aligned}
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-28 15:32:56 +00:00
Here the path space is $P \defeq \lambda\; i \to A$ and it satsifies
$P\ i = A$ definitionally. So to inhabit it, is to give a path $\I \to
A$ that is judgmentally $a$ at either endpoint. This is satisfied by
2018-05-28 15:32:56 +00:00
the constant path; i.e.\ the path that is constantly $a$ at any index
$i \tp \I$.
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
It is also surprisingly easy to show functional extensionality.
Functional extensionality is the proposition that given a type $A \tp
\MCU$, a family of types $B \tp A \to \MCU$ and functions $f, g \tp
\prod_{a \tp A} B\ a$ gives:
2018-05-09 16:13:36 +00:00
%
\begin{equation}
\label{eq:funExt}
2018-05-28 15:32:56 +00:00
\funExt \tp \left(\prod_{a \tp A} f\ a \equiv g\ a \right) \to f \equiv g
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-02 15:02:46 +00:00
%
2018-05-28 15:32:56 +00:00
%% p = λ\; i a → p a i
So given $η \tp \prod_{a \tp A} f\ a \equiv g\ a$ we must give a path
$f \equiv g$. That is a function $\I \to \prod_{a \tp A} B\ a$. So let
$i \tp \I$ be given. We must now give an expression $\phi \tp
\prod_{a \tp A} B\ a$ satisfying $\phi\ 0 \equiv f\ a$ and $\phi\ 1
\equiv g\ a$. This neccesitates that the expression must be a lambda
abstraction, so let $a \tp A$ be given. We can now apply $a$ to $η$
and get the path $η\ a \tp f\ a \equiv g\ a$. This exactly
satisfies the conditions for $\phi$. In conclusion \ref{eq:funExt} is
inhabited by the term:
2018-05-09 16:13:36 +00:00
%
2018-05-28 15:32:56 +00:00
\begin{equation*}
\funExt\ η \defeq λ\; i\ a → η\ a\ i
\end{equation*}
2018-05-09 16:13:36 +00:00
%
2018-05-28 15:32:56 +00:00
With $\funExt$ in place we can now construct a path between
$\var{zeroLeft}$ and $\var{zeroRight}$ -- the functions defined in the
introduction \S\ref{sec:functional-extensionality}:
2018-05-09 16:13:36 +00:00
%
\begin{align*}
2018-05-28 15:32:56 +00:00
p & \tp \var{zeroLeft} \equiv \var{zeroRight} \\
p & \defeq \funExt\ \var{zrn}
2018-05-09 16:13:36 +00:00
\end{align*}
%
2018-05-28 15:32:56 +00:00
Here $\var{zrn}$ is the proof from \ref{eq:zrn}.
2018-05-15 14:08:29 +00:00
%
2018-05-02 15:02:46 +00:00
\section{Homotopy levels}
2018-05-28 15:32:56 +00:00
In ITT all equality proofs are identical (in a closed context). This
means that, in some sense, any two inhabitants of $a \equiv b$ are
``equally good''. They do not have any interesting structure. This is
referred to as Uniqueness of Identity Proofs (UIP). Unfortunately it
is not possible to have a type theory with both univalence and UIP.
Instead in cubical Agda we have a hierarchy of types with an
increasing amount of homotopic structure. At the bottom of this
hierarchy is the set of contractible types:
2018-05-02 15:02:46 +00:00
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
%% \begin{split}
2018-05-09 16:13:36 +00:00
& \isContr && \tp \MCU \to \MCU \\
2018-05-02 15:02:46 +00:00
& \isContr\ A && \defeq \sum_{c \tp A} \prod_{a \tp A} a \equiv c
2018-05-08 00:00:23 +00:00
%% \end{split}
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
The first component of $\isContr\ A$ is called ``the center of contraction''.
2018-05-15 14:08:29 +00:00
Under the propositions-as-types interpretation of type theory $\isContr\ A$ can
2018-05-09 16:13:36 +00:00
be thought of as ``the true proposition $A$''. And indeed $\top$ is
contractible:
2018-05-28 15:32:56 +00:00
%
2018-05-09 16:13:36 +00:00
\begin{equation*}
2018-05-28 15:32:56 +00:00
(\var{tt} , \lambda\; x \to \refl) \tp \isContr\ \top
2018-05-09 16:13:36 +00:00
\end{equation*}
%
It is a theorem that if a type is contractible, then it is isomorphic to the
unit-type.
2018-05-02 15:02:46 +00:00
The next step in the hierarchy is the set of mere propositions:
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isProp && \tp \MCU \to \MCU \\
& \isProp\ A && \defeq \prod_{a_0, a_1 \tp A} a_0 \equiv a_1
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
2018-05-15 14:08:29 +00:00
One can think of $\isProp\ A$ as the set of true and false propositions. And
2018-05-09 16:13:36 +00:00
indeed both $\top$ and $\bot$ are propositions:
%
\begin{align*}
2018-05-28 15:32:56 +00:00
\; \var{tt}, \var{tt} → refl) & \tp \isProp\ \\
λ\;\varnothing\ \varnothing & \tp \isProp\
2018-05-09 16:13:36 +00:00
\end{align*}
%
2018-05-15 14:08:29 +00:00
The term $\varnothing$ is used here to denote an impossible pattern. It is a
theorem that if a mere proposition $A$ is inhabited, then so is it contractible.
If it is not inhabited it is equivalent to the empty-type (or false
2018-05-28 15:32:56 +00:00
proposition).
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
I will refer to a type $A \tp \MCU$ as a \emph{mere proposition} if I want to
2018-05-02 15:02:46 +00:00
stress that we have $\isProp\ A$.
2018-05-28 15:32:56 +00:00
The next step in the hierarchy is the set of homotopical sets:
2018-05-02 15:02:46 +00:00
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isSet && \tp \MCU \to \MCU \\
& \isSet\ A && \defeq \prod_{a_0, a_1 \tp A} \isProp\ (a_0 \equiv a_1)
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
2018-05-28 15:32:56 +00:00
I will not give an example of a set at this point. It turns out that
proving e.g.\ $\isProp\ \bN$ directly is not so straightforward (see
\cite[\S3.1.4]{hott-2013}). Hedberg's theorem states that any type
with decidable equality is a set. There will be examples of sets later
in this report. At this point it should be noted that the term ``set''
is somewhat conflated; there is the notion of sets from set theory.
In Agda types are denoted \texttt{Set}. I will use it consistently to
2018-05-28 15:32:56 +00:00
refer to a type $A$ as a set exactly if $\isSet\ A$ is a proposition.
2018-05-02 15:02:46 +00:00
2018-05-09 16:47:12 +00:00
As the reader may have guessed the next step in the hierarchy is the type:
2018-05-02 15:02:46 +00:00
%
\begin{equation}
2018-05-08 00:00:23 +00:00
\begin{aligned}
2018-05-02 15:02:46 +00:00
& \isGroupoid && \tp \MCU \to \MCU \\
& \isGroupoid\ A && \defeq \prod_{a_0, a_1 \tp A} \isSet\ (a_0 \equiv a_1)
2018-05-08 00:00:23 +00:00
\end{aligned}
2018-05-02 15:02:46 +00:00
\end{equation}
%
So it continues. In fact we can generalize this family of types by
indexing them with a natural number. For historical reasons, though,
the bottom of the hierarchy, the contractible types, is said to be a
\nomen{-2-type}{homotopy levels}, propositions are
\nomen{-1-types}{homotopy levels}, (homotopical) sets are
\nomen{0-types}{homotopy levels} and so on\ldots
2018-05-02 15:02:46 +00:00
Just as with paths, homotopical sets are not at the center of focus for this
thesis. But I mention here some properties that will be relevant for this
exposition:
Proposition: Homotopy levels are cumulative. That is, if $A \tp \MCU$ has
homotopy level $n$ then so does it have $n + 1$.
2018-05-28 15:32:56 +00:00
For any level $n$ it is the case that to be of level $n$ is a mere proposition.
2018-05-02 15:02:46 +00:00
%
\section{A few lemmas}
Rather than getting into the nitty-gritty details of Agda I venture to
2018-05-28 15:32:56 +00:00
take a more ``combinator-based'' approach. That is I will use
theorems about paths that have already been formalized.
Specifically the results come from the Agda library \texttt{cubical}
(\cite{cubical-demo}). I have used a handful of results from this
2018-05-28 15:32:56 +00:00
library as well as contributed a few lemmas myself%
\footnote{The module \texttt{Cat.Prelude} lists the upstream
dependencies. My contribution to \texttt{cubical} can as well be
2018-05-28 15:32:56 +00:00
found in the git logs which are available at
\hrefsymb{https://github.com/Saizan/cubical-demo}{\texttt{https://github.com/Saizan/cubical-demo}}.
}.
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
These theorems are all purely related to homotopy type theory and as
such not specific to the formalization of Category Theory. I will
present a few of these theorems here as they will be used throughout
chapter \ref{ch:implementation}. They should also give the reader some
intuition about the path type.
2018-05-02 15:02:46 +00:00
\subsection{Path induction}
2018-05-03 12:18:51 +00:00
\label{sec:pathJ}
2018-05-28 15:32:56 +00:00
The induction principle for paths intuitively gives us a way to reason
about a type family indexed by a path by only considering if said path
is $\refl$ (the \nomen{base case}{path induction}). For \emph{based
path induction}, that equality is \emph{based} at some element $a
\tp A$.
2018-05-02 15:02:46 +00:00
2018-05-28 15:32:56 +00:00
\pagebreak[3]
\begin{samepage}
Let a type $A \tp \MCU$ and an element of the type $a \tp A$ be
given. $a$ is said to be the base of the induction.\linebreak[3] Given
a family of types:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-10 13:28:33 +00:00
D \tp \prod_{b \tp A} \prod_{p \tp a ≡ b} \MCU
2018-05-02 15:02:46 +00:00
$$
%
and an inhabitant of $D$ at $\refl$:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-10 13:28:33 +00:00
d \tp D\ a\ \refl
2018-05-02 15:02:46 +00:00
$$
We have the function:
%
2018-05-09 16:13:36 +00:00
\begin{equation}
2018-05-18 11:14:41 +00:00
\pathJ\ D\ d \tp \prod_{b \tp A} \prod_{p \tp a ≡ b} D\ b\ p
2018-05-09 16:13:36 +00:00
\end{equation}
2018-05-28 15:32:56 +00:00
\end{samepage}%
2018-05-10 13:28:33 +00:00
A simple application of $\pathJ$ is for proving that $\var{sym}$ is an
involution. Namely for any set $A \tp \MCU$, points $a, b \tp A$ and a path
between them $p \tp a \equiv b$:
%
\begin{equation}
\label{eq:sym-invol}
\var{sym}\ (\var{sym}\ p) ≡ p
\end{equation}
%
2018-05-28 15:32:56 +00:00
The proof will be by induction on $p$ and will be based at $a$. That
is $D$ will be the family:
2018-05-10 13:28:33 +00:00
%
\begin{align*}
2018-05-11 11:07:47 +00:00
D & \tp \prod_{b' \tp A} \prod_{p \tp a ≡ b'} \MCU \\
2018-05-10 13:28:33 +00:00
D\ b'\ p' & \defeq \var{sym}\ (\var{sym}\ p') ≡ p'
\end{align*}
%
2018-05-15 14:08:29 +00:00
The base case will then be:
2018-05-10 13:28:33 +00:00
%
\begin{align*}
d & \tp \var{sym}\ (\var{sym}\ \refl) ≡ \refl \\
d & \defeq \refl
\end{align*}
%
The reason $\refl$ proves this is that $\var{sym}\ \refl = \refl$ holds
definitionally. In summary \ref{eq:sym-invol} is inhabited by the term:
%
\begin{align*}
2018-05-11 11:07:47 +00:00
\pathJ\ D\ d\ b\ p
2018-05-10 13:28:33 +00:00
\tp
\var{sym}\ (\var{sym}\ p) ≡ p
\end{align*}
%
2018-05-11 11:07:47 +00:00
Another application of $\pathJ$ is for proving associativity of $\trans$. That
is, given a type $A \tp \MCU$, elements of $A$, $a, b, c, d \tp A$ and paths
2018-05-28 15:32:56 +00:00
between them $p \tp a \equiv b$, $q \tp b \equiv c$ and $r \tp c \equiv d$ we
2018-05-11 11:07:47 +00:00
have the following:
%
\begin{equation}
\label{eq:cum-trans}
\trans\ p\ (\trans\ q\ r) ≡ \trans\ (\trans\ p\ q)\ r
\end{equation}
%
In this case the induction will be based at $c$ (the left-endpoint of $r$) and
over the family:
%
\begin{align*}
T & \tp \prod_{d' \tp A} \prod_{r' \tp c ≡ d'} \MCU \\
T\ d'\ r' & \defeq \trans\ p\ (\trans\ q\ r') ≡ \trans\ (\trans\ p\ q)\ r'
\end{align*}
%
The base case is proven with $t$ which is defined as:
2018-05-11 11:07:47 +00:00
%
\begin{align*}
\trans\ p\ (\trans\ q\ \refl) &
\trans\ p\ q \\
&
\trans\ (\trans\ p\ q)\ \refl
\end{align*}
%
Here we have used the proposition $\trans\ p\ \refl \equiv p$ without proof. In
conclusion \ref{eq:cum-trans} is inhabited by the term:
%
\begin{align*}
\pathJ\ T\ t\ d\ r
\end{align*}
%
2018-05-28 15:32:56 +00:00
We shall see another application of path induction in \ref{eq:pathJ-example}.
2018-05-09 16:13:36 +00:00
2018-05-02 15:02:46 +00:00
\subsection{Paths over propositions}
2018-05-03 12:18:51 +00:00
\label{sec:lemPropF}
2018-05-28 15:32:56 +00:00
Another very useful combinator is $\lemPropF$: Given a type $A \tp
\MCU$ and a type family on $A$; $D \tp A \to \MCU$. Let $\var{propD}
\tp \prod_{x \tp A} \isProp\ (D\ x)$ be the proof that $D$ is a mere
proposition for all elements of $A$. Furthermore say we have a path
between some two elements in $A$; $p \tp a_0 \equiv a_1$ then we can
built a heterogeneous path between any two elements of $d_0 \tp
D\ a_0$ and $d_1 \tp D\ a_1$.
2018-05-02 15:02:46 +00:00
%
$$
2018-05-28 15:32:56 +00:00
\lemPropF\ \var{propD}\ p \tp \Path\ (\lambda\; i \mto D\ (p\ i))\ d_0\ d_1
2018-05-02 15:02:46 +00:00
$$
%
2018-05-28 15:32:56 +00:00
Note that $d_0$ and $d_1$, though points of the same family, have
different types. This is quite a mouthful, so let me try to show how
2018-05-28 15:32:56 +00:00
this is a very general and useful result.
2018-05-02 15:02:46 +00:00
Often when proving equalities between elements of some dependent types
2018-05-28 15:32:56 +00:00
$\lemPropF$ can be used to boil this complexity down to showing that
the dependent parts of the type are mere propositions. For instance
say we have a type:
2018-05-02 15:02:46 +00:00
%
$$
2018-05-28 15:32:56 +00:00
T \defeq \sum_{a \tp A} D\ a
2018-05-02 15:02:46 +00:00
$$
%
for some proposition $D \tp A \to \MCU$. That is we have $\var{propD}
2018-05-28 15:32:56 +00:00
\tp \prod_{a \tp A} \isProp\ (D\ a)$. If we want to prove $t_0 \equiv
t_1$ for two elements $t_0, t_1 \tp T$ then this will be a pair of
paths:
2018-05-02 15:02:46 +00:00
%
%
\begin{align*}
p \tp & \fst\ t_0 \equiv \fst\ t_1 \\
2018-05-28 15:32:56 +00:00
& \Path\ (\lambda\; i \to D\ (p\ i))\ (\snd\ t_0)\ (\snd\ t_1)
2018-05-02 15:02:46 +00:00
\end{align*}
%
2018-05-28 15:32:56 +00:00
Here $\lemPropF$ directly allow us to prove the latter of these given
that we have already provided $p$.
2018-05-02 15:02:46 +00:00
%
$$
2018-05-28 15:32:56 +00:00
\lemPropF\ \var{propD}\ p
\tp \Path\ (\lambda\; i \to D\ (p\ i))\ (\snd\ t_0)\ (\snd\ t_1)
2018-05-02 15:02:46 +00:00
$$
%
\subsection{Functions over propositions}
\label{sec:propPi}%
2018-05-02 15:02:46 +00:00
$\prod$-types preserve propositionality when the co-domain is always a
proposition.
%
$$
\mathit{propPi} \tp \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\prod_{a \tp A} P\ a\right)
$$
\subsection{Pairs over propositions}
2018-05-03 12:18:51 +00:00
\label{sec:propSig}
2018-05-02 15:02:46 +00:00
%
2018-05-28 15:32:56 +00:00
$\sum$-types preserve propositionality whenever its first component is
a proposition and its second component is a proposition for all
2018-05-28 15:32:56 +00:00
points of the left type.
2018-05-02 15:02:46 +00:00
%
$$
\mathit{propSig} \tp \isProp\ A \to \left(\prod_{a \tp A} \isProp\ (P\ a)\right) \to \isProp\ \left(\sum_{a \tp A} P\ a\right)
$$