Move proposition to wishlist

This commit is contained in:
Frederik Hanghøj Iversen 2018-02-19 11:25:16 +01:00
parent 89ad60ffef
commit bec5acdc59
2 changed files with 7 additions and 4 deletions

View file

@ -14,6 +14,8 @@ import Function
open import Cubical open import Cubical
open import Cubical.NType.Properties using ( propIsEquiv ) open import Cubical.NType.Properties using ( propIsEquiv )
open import Cat.Wishlist
∃! : {a b} {A : Set a} ∃! : {a b} {A : Set a}
(A Set b) Set (a b) (A Set b) Set (a b)
∃! = ∃!≈ _≡_ ∃! = ∃!≈ _≡_
@ -23,10 +25,6 @@ open import Cubical.NType.Properties using ( propIsEquiv )
syntax ∃!-syntax (λ x B) = ∃![ x ] B syntax ∃!-syntax (λ x B) = ∃![ x ] B
-- This follows from [HoTT-book: §7.1.10]
-- Andrea says the proof is in `cubical` but I can't find it.
postulate isSetIsProp : { : Level} {A : Set } isProp (isSet A)
record RawCategory ( ' : Level) : Set (lsuc (' )) where record RawCategory ( ' : Level) : Set (lsuc (' )) where
-- adding no-eta-equality can speed up type-checking. -- adding no-eta-equality can speed up type-checking.
-- ONLY IF you define your categories with copatterns though. -- ONLY IF you define your categories with copatterns though.

View file

@ -1,6 +1,11 @@
module Cat.Wishlist where module Cat.Wishlist where
open import Level
open import Cubical.NType open import Cubical.NType
open import Data.Nat using (_≤_ ; z≤n ; s≤s) open import Data.Nat using (_≤_ ; z≤n ; s≤s)
postulate ntypeCommulative : { n m} {A : Set } n m HasLevel n ⟩₋₂ A HasLevel m ⟩₋₂ A postulate ntypeCommulative : { n m} {A : Set } n m HasLevel n ⟩₋₂ A HasLevel m ⟩₋₂ A
-- This follows from [HoTT-book: §7.1.10]
-- Andrea says the proof is in `cubical` but I can't find it.
postulate isSetIsProp : { : Level} {A : Set } isProp (isSet A)