Move proposition to wishlist
This commit is contained in:
parent
89ad60ffef
commit
bec5acdc59
|
@ -14,6 +14,8 @@ import Function
|
||||||
open import Cubical
|
open import Cubical
|
||||||
open import Cubical.NType.Properties using ( propIsEquiv )
|
open import Cubical.NType.Properties using ( propIsEquiv )
|
||||||
|
|
||||||
|
open import Cat.Wishlist
|
||||||
|
|
||||||
∃! : ∀ {a b} {A : Set a}
|
∃! : ∀ {a b} {A : Set a}
|
||||||
→ (A → Set b) → Set (a ⊔ b)
|
→ (A → Set b) → Set (a ⊔ b)
|
||||||
∃! = ∃!≈ _≡_
|
∃! = ∃!≈ _≡_
|
||||||
|
@ -23,10 +25,6 @@ open import Cubical.NType.Properties using ( propIsEquiv )
|
||||||
|
|
||||||
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
syntax ∃!-syntax (λ x → B) = ∃![ x ] B
|
||||||
|
|
||||||
-- This follows from [HoTT-book: §7.1.10]
|
|
||||||
-- Andrea says the proof is in `cubical` but I can't find it.
|
|
||||||
postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A)
|
|
||||||
|
|
||||||
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
record RawCategory (ℓ ℓ' : Level) : Set (lsuc (ℓ' ⊔ ℓ)) where
|
||||||
-- adding no-eta-equality can speed up type-checking.
|
-- adding no-eta-equality can speed up type-checking.
|
||||||
-- ONLY IF you define your categories with copatterns though.
|
-- ONLY IF you define your categories with copatterns though.
|
||||||
|
|
|
@ -1,6 +1,11 @@
|
||||||
module Cat.Wishlist where
|
module Cat.Wishlist where
|
||||||
|
|
||||||
|
open import Level
|
||||||
open import Cubical.NType
|
open import Cubical.NType
|
||||||
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
open import Data.Nat using (_≤_ ; z≤n ; s≤s)
|
||||||
|
|
||||||
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
postulate ntypeCommulative : ∀ {ℓ n m} {A : Set ℓ} → n ≤ m → HasLevel ⟨ n ⟩₋₂ A → HasLevel ⟨ m ⟩₋₂ A
|
||||||
|
|
||||||
|
-- This follows from [HoTT-book: §7.1.10]
|
||||||
|
-- Andrea says the proof is in `cubical` but I can't find it.
|
||||||
|
postulate isSetIsProp : {ℓ : Level} → {A : Set ℓ} → isProp (isSet A)
|
||||||
|
|
Loading…
Reference in a new issue