cat/src/Cat/Categories/Cat.agda

403 lines
16 KiB
Agda
Raw Normal View History

2018-02-02 14:33:54 +00:00
-- There is no category of categories in our interpretation
{-# OPTIONS --cubical --allow-unsolved-metas #-}
module Cat.Categories.Cat where
open import Agda.Primitive
open import Cubical
open import Function
open import Data.Product renaming (proj₁ to fst ; proj₂ to snd)
open import Cat.Category
2018-02-05 15:35:33 +00:00
open import Cat.Category.Functor
open import Cat.Category.Product
open import Cat.Category.Exponential
2018-01-31 13:39:54 +00:00
open import Cat.Equality
open Equality.Data.Product
open Functor
2018-01-30 15:23:36 +00:00
open IsFunctor
open Category hiding (_∘_)
2018-01-25 11:01:37 +00:00
-- The category of categories
2018-01-24 15:38:28 +00:00
module _ ( ' : Level) where
private
2018-01-31 13:39:54 +00:00
module _ {𝔸 𝔹 𝔻 : Category '} {F : Functor 𝔸 𝔹} {G : Functor 𝔹 } {H : Functor 𝔻} where
2018-01-25 11:44:47 +00:00
private
2018-01-31 13:39:54 +00:00
eq* : func* (H ∘f (G ∘f F)) func* ((H ∘f G) ∘f F)
2018-01-25 11:44:47 +00:00
eq* = refl
eq→ : PathP
2018-02-05 15:35:33 +00:00
(λ i {A B : Object 𝔸} 𝔸 [ A , B ] 𝔻 [ eq* i A , eq* i B ])
2018-01-31 13:39:54 +00:00
(func→ (H ∘f (G ∘f F))) (func→ ((H ∘f G) ∘f F))
2018-01-25 11:44:47 +00:00
eq→ = refl
2018-01-31 13:39:54 +00:00
postulate
eqI
2018-02-05 15:35:33 +00:00
: (λ i {A : Object 𝔸} eq→ i (𝟙 𝔸 {A}) 𝟙 𝔻 {eq* i A})
2018-01-31 13:39:54 +00:00
[ (H ∘f (G ∘f F)) .isFunctor .ident
((H ∘f G) ∘f F) .isFunctor .ident
]
eqD
: (λ i {A B C} {f : 𝔸 [ A , B ]} {g : 𝔸 [ B , C ]}
eq→ i (𝔸 [ g f ]) 𝔻 [ eq→ i g eq→ i f ])
[ (H ∘f (G ∘f F)) .isFunctor .distrib
((H ∘f G) ∘f F) .isFunctor .distrib
]
assc : H ∘f (G ∘f F) (H ∘f G) ∘f F
assc = Functor≡ eq* eq→ (IsFunctor≡ eqI eqD)
2018-01-25 11:44:47 +00:00
module _ { 𝔻 : Category '} {F : Functor 𝔻} where
module _ where
private
eq* : (func* F) (func* (identity {C = })) func* F
eq* = refl
-- lemmm : func→ {C = A} {D = B} (f ∘f identity) ≡ func→ f
eq→ : PathP
(λ i
{x y : Object } Arrow x y Arrow 𝔻 (func* F x) (func* F y))
(func→ (F ∘f identity)) (func→ F)
eq→ = refl
postulate
eqI-r
2018-02-05 15:35:33 +00:00
: (λ i {c : Object } (λ _ 𝔻 [ func* F c , func* F c ])
[ func→ F (𝟙 ) 𝟙 𝔻 ])
[(F ∘f identity) .isFunctor .ident F .isFunctor .ident ]
2018-01-25 11:44:47 +00:00
eqD-r : PathP
(λ i
2018-02-05 15:35:33 +00:00
{A B C : Object } {f : [ A , B ]} {g : [ B , C ]}
eq→ i ( [ g f ]) 𝔻 [ eq→ i g eq→ i f ])
2018-01-30 15:23:36 +00:00
((F ∘f identity) .isFunctor .distrib) (F .isFunctor .distrib)
2018-01-25 11:44:47 +00:00
ident-r : F ∘f identity F
ident-r = Functor≡ eq* eq→ (IsFunctor≡ eqI-r eqD-r)
2018-01-25 11:44:47 +00:00
module _ where
private
postulate
eq* : (identity ∘f F) .func* F .func*
eq→ : PathP
2018-02-05 15:35:33 +00:00
(λ i {x y : Object } [ x , y ] 𝔻 [ eq* i x , eq* i y ])
2018-01-25 11:44:47 +00:00
((identity ∘f F) .func→) (F .func→)
2018-02-05 15:35:33 +00:00
eqI : (λ i {A : Object } eq→ i (𝟙 {A}) 𝟙 𝔻 {eq* i A})
[ ((identity ∘f F) .isFunctor .ident) (F .isFunctor .ident) ]
2018-02-05 15:35:33 +00:00
eqD : PathP (λ i {A B C : Object } {f : [ A , B ]} {g : [ B , C ]}
eq→ i ( [ g f ]) 𝔻 [ eq→ i g eq→ i f ])
2018-01-30 15:23:36 +00:00
((identity ∘f F) .isFunctor .distrib) (F .isFunctor .distrib)
-- (λ z → eq* i z) (eq→ i)
2018-01-25 11:44:47 +00:00
ident-l : identity ∘f F F
ident-l = Functor≡ eq* eq→ λ i record { ident = eqI i ; distrib = eqD i }
2018-02-05 15:35:33 +00:00
RawCat : RawCategory (lsuc ( ')) ( ')
RawCat =
record
{ Object = Category '
; Arrow = Functor
; 𝟙 = identity
; _∘_ = _∘f_
-- What gives here? Why can I not name the variables directly?
-- ; isCategory = record
-- { assoc = λ {_ _ _ _ F G H} → assc {F = F} {G = G} {H = H}
-- ; ident = ident-r , ident-l
-- }
2018-01-21 18:23:24 +00:00
}
2018-02-05 15:35:33 +00:00
open IsCategory
instance
:isCategory: : IsCategory RawCat
assoc :isCategory: {f = F} {G} {H} = assc {F = F} {G = G} {H = H}
ident :isCategory: = ident-r , ident-l
arrow-is-set :isCategory: = {!!}
univalent :isCategory: = {!!}
Cat : Category (lsuc ( ')) ( ')
raw Cat = RawCat
2018-01-24 15:38:28 +00:00
module _ { ' : Level} where
2018-01-25 11:44:47 +00:00
module _ ( 𝔻 : Category ') where
2018-01-24 15:38:28 +00:00
private
2018-01-31 13:39:54 +00:00
Catt = Cat '
2018-02-05 15:35:33 +00:00
:Object: = Object × Object 𝔻
2018-01-24 15:38:28 +00:00
:Arrow: : :Object: :Object: Set '
2018-01-25 11:44:47 +00:00
:Arrow: (c , d) (c' , d') = Arrow c c' × Arrow 𝔻 d d'
2018-01-24 15:38:28 +00:00
:𝟙: : {o : :Object:} :Arrow: o o
2018-02-05 15:35:33 +00:00
:𝟙: = 𝟙 , 𝟙 𝔻
2018-01-24 15:38:28 +00:00
_:⊕:_ :
{a b c : :Object:}
:Arrow: b c
:Arrow: a b
:Arrow: a c
_:⊕:_ = λ { (bc∈C , bc∈D) (ab∈C , ab∈D) [ bc∈C ab∈C ] , 𝔻 [ bc∈D ab∈D ]}
2018-01-24 15:38:28 +00:00
2018-02-05 15:35:33 +00:00
:rawProduct: : RawCategory '
RawCategory.Object :rawProduct: = :Object:
RawCategory.Arrow :rawProduct: = :Arrow:
RawCategory.𝟙 :rawProduct: = :𝟙:
RawCategory._∘_ :rawProduct: = _:⊕:_
module C = IsCategory ( .isCategory)
module D = IsCategory (𝔻 .isCategory)
postulate
issSet : {A B : RawCategory.Object :rawProduct:} isSet (RawCategory.Arrow :rawProduct: A B)
2018-01-24 15:38:28 +00:00
instance
2018-02-05 15:35:33 +00:00
:isCategory: : IsCategory :rawProduct:
-- :isCategory: = record
-- { assoc = Σ≡ C.assoc D.assoc
-- ; ident
-- = Σ≡ (fst C.ident) (fst D.ident)
-- , Σ≡ (snd C.ident) (snd D.ident)
-- ; arrow-is-set = issSet
-- ; univalent = {!!}
-- }
IsCategory.assoc :isCategory: = Σ≡ C.assoc D.assoc
IsCategory.ident :isCategory:
2018-01-31 13:39:54 +00:00
= Σ≡ (fst C.ident) (fst D.ident)
, Σ≡ (snd C.ident) (snd D.ident)
2018-02-05 15:35:33 +00:00
IsCategory.arrow-is-set :isCategory: = issSet
IsCategory.univalent :isCategory: = {!!}
2018-01-24 15:38:28 +00:00
:product: : Category '
2018-02-05 15:35:33 +00:00
raw :product: = :rawProduct:
2018-01-24 15:38:28 +00:00
2018-01-31 13:39:54 +00:00
proj₁ : Catt [ :product: , ]
2018-01-30 15:23:36 +00:00
proj₁ = record { func* = fst ; func→ = fst ; isFunctor = record { ident = refl ; distrib = refl } }
2018-01-24 15:38:28 +00:00
2018-01-31 13:39:54 +00:00
proj₂ : Catt [ :product: , 𝔻 ]
2018-01-30 15:23:36 +00:00
proj₂ = record { func* = snd ; func→ = snd ; isFunctor = record { ident = refl ; distrib = refl } }
2018-01-24 15:38:28 +00:00
2018-01-31 13:39:54 +00:00
module _ {X : Object Catt} (x₁ : Catt [ X , ]) (x₂ : Catt [ X , 𝔻 ]) where
2018-01-24 15:38:28 +00:00
open Functor
2018-02-05 15:35:33 +00:00
postulate x : Functor X :product:
-- x = record
-- { func* = λ x → x₁ .func* x , x₂ .func* x
-- ; func→ = λ x → func→ x₁ x , func→ x₂ x
-- ; isFunctor = record
-- { ident = Σ≡ x₁.ident x₂.ident
-- ; distrib = Σ≡ x₁.distrib x₂.distrib
-- }
-- }
-- where
-- open module x₁ = IsFunctor (x₁ .isFunctor)
-- open module x₂ = IsFunctor (x₂ .isFunctor)
-- Turned into postulate after:
-- > commit e8215b2c051062c6301abc9b3f6ec67106259758 (HEAD -> dev, github/dev)
-- > Author: Frederik Hanghøj Iversen <fhi.1990@gmail.com>
-- > Date: Mon Feb 5 14:59:53 2018 +0100
postulate isUniqL : Catt [ proj₁ x ] x₁
-- isUniqL = Functor≡ eq* eq→ {!!}
-- where
-- eq* : (Catt [ proj₁ ∘ x ]) .func* ≡ x₁ .func*
-- eq* = {!refl!}
-- eq→ : (λ i → {A : Object X} {B : Object X} → X [ A , B ] → [ eq* i A , eq* i B ])
-- [ (Catt [ proj₁ ∘ x ]) .func→ ≡ x₁ .func→ ]
-- eq→ = refl
-- postulate eqIsF : (Catt [ proj₁ ∘ x ]) .isFunctor ≡ x₁ .isFunctor
2018-01-31 13:39:54 +00:00
-- eqIsF = IsFunctor≡ {!refl!} {!!}
2018-01-24 15:38:28 +00:00
postulate isUniqR : Catt [ proj₂ x ] x₂
2018-01-25 11:44:47 +00:00
-- isUniqR = Functor≡ refl refl {!!} {!!}
2018-01-24 15:38:28 +00:00
isUniq : Catt [ proj₁ x ] x₁ × Catt [ proj₂ x ] x₂
2018-01-24 15:38:28 +00:00
isUniq = isUniqL , isUniqR
uniq : ∃![ x ] (Catt [ proj₁ x ] x₁ × Catt [ proj₂ x ] x₂)
2018-01-24 15:38:28 +00:00
uniq = x , isUniq
2018-01-25 11:44:47 +00:00
instance
isProduct : IsProduct (Cat ') proj₁ proj₂
isProduct = uniq
2018-01-24 15:38:28 +00:00
2018-01-25 11:44:47 +00:00
product : Product { = (Cat ')} 𝔻
2018-01-24 15:38:28 +00:00
product = record
{ obj = :product:
; proj₁ = proj₁
; proj₂ = proj₂
}
2018-01-24 15:38:28 +00:00
module _ { ' : Level} where
instance
2018-01-25 11:01:37 +00:00
hasProducts : HasProducts (Cat ')
hasProducts = record { product = product }
2018-01-24 15:38:28 +00:00
-- Basically proves that `Cat ` is cartesian closed.
2018-01-25 11:01:37 +00:00
module _ ( : Level) where
2018-01-24 15:38:28 +00:00
private
2018-01-25 11:01:37 +00:00
open Data.Product
2018-01-24 15:38:28 +00:00
open import Cat.Categories.Fun
2018-01-25 11:01:37 +00:00
Cat : Category (lsuc ( )) ( )
Cat = Cat
2018-01-24 15:38:28 +00:00
module _ ( 𝔻 : Category ) where
private
2018-02-05 15:35:33 +00:00
:obj: : Object (Cat )
2018-01-24 15:38:28 +00:00
:obj: = Fun { = } {𝔻 = 𝔻}
2018-02-05 15:35:33 +00:00
:func*: : Functor 𝔻 × Object Object 𝔻
2018-01-24 15:38:28 +00:00
:func*: (F , A) = F .func* A
2018-02-05 15:35:33 +00:00
module _ {dom cod : Functor 𝔻 × Object } where
2018-01-24 15:38:28 +00:00
private
F : Functor 𝔻
F = proj₁ dom
2018-02-05 15:35:33 +00:00
A : Object
2018-01-24 15:38:28 +00:00
A = proj₂ dom
2018-01-24 15:38:28 +00:00
G : Functor 𝔻
G = proj₁ cod
2018-02-05 15:35:33 +00:00
B : Object
2018-01-24 15:38:28 +00:00
B = proj₂ cod
2018-02-05 15:35:33 +00:00
:func→: : (pobj : NaturalTransformation F G × [ A , B ])
𝔻 [ F .func* A , G .func* B ]
2018-01-24 15:38:28 +00:00
:func→: ((θ , θNat) , f) = result
where
2018-02-05 15:35:33 +00:00
θA : 𝔻 [ F .func* A , G .func* A ]
2018-01-24 15:38:28 +00:00
θA = θ A
2018-02-05 15:35:33 +00:00
θB : 𝔻 [ F .func* B , G .func* B ]
2018-01-24 15:38:28 +00:00
θB = θ B
2018-02-05 15:35:33 +00:00
F→f : 𝔻 [ F .func* A , F .func* B ]
2018-01-24 15:38:28 +00:00
F→f = F .func→ f
2018-02-05 15:35:33 +00:00
G→f : 𝔻 [ G .func* A , G .func* B ]
2018-01-24 15:38:28 +00:00
G→f = G .func→ f
2018-02-05 15:35:33 +00:00
l : 𝔻 [ F .func* A , G .func* B ]
l = 𝔻 [ θB F→f ]
2018-02-05 15:35:33 +00:00
r : 𝔻 [ F .func* A , G .func* B ]
r = 𝔻 [ G→f θA ]
2018-01-24 15:38:28 +00:00
-- There are two choices at this point,
-- but I suppose the whole point is that
-- by `θNat f` we have `l ≡ r`
-- lem : 𝔻 [ θ B ∘ F .func→ f ] ≡ 𝔻 [ G .func→ f ∘ θ A ]
2018-01-24 15:38:28 +00:00
-- lem = θNat f
2018-02-05 15:35:33 +00:00
result : 𝔻 [ F .func* A , G .func* B ]
2018-01-24 15:38:28 +00:00
result = l
2018-01-24 15:38:28 +00:00
_×p_ = product
2018-02-05 15:35:33 +00:00
module _ {c : Functor 𝔻 × Object } where
2018-01-24 15:38:28 +00:00
private
F : Functor 𝔻
F = proj₁ c
2018-02-05 15:35:33 +00:00
C : Object
2018-01-24 15:38:28 +00:00
C = proj₂ c
2018-01-24 15:38:28 +00:00
-- NaturalTransformation F G × .Arrow A B
2018-01-25 11:01:37 +00:00
-- :ident: : :func→: {c} {c} (identityNat F , .𝟙) 𝔻 .𝟙
-- :ident: = trans (proj₂ 𝔻.ident) (F .ident)
2018-01-24 15:38:28 +00:00
-- where
-- open module 𝔻 = IsCategory (𝔻 .isCategory)
2018-01-25 11:01:37 +00:00
-- Unfortunately the equational version has some ambigous arguments.
2018-02-05 15:35:33 +00:00
:ident: : :func→: {c} {c} (identityNat F , 𝟙 {o = proj₂ c}) 𝟙 𝔻
2018-01-25 11:01:37 +00:00
:ident: = begin
2018-02-05 15:35:33 +00:00
:func→: {c} {c} (𝟙 (Product.obj (:obj: ×p )) {c}) ≡⟨⟩
:func→: {c} {c} (identityNat F , 𝟙 ) ≡⟨⟩
𝔻 [ identityTrans F C F .func→ (𝟙 )] ≡⟨⟩
𝔻 [ 𝟙 𝔻 F .func→ (𝟙 )] ≡⟨ proj₂ 𝔻.ident
F .func→ (𝟙 ) ≡⟨ F.ident
𝟙 𝔻
2018-01-25 11:01:37 +00:00
where
open module 𝔻 = IsCategory (𝔻 .isCategory)
2018-01-30 15:23:36 +00:00
open module F = IsFunctor (F .isFunctor)
2018-02-05 15:35:33 +00:00
module _ {F×A G×B H×C : Functor 𝔻 × Object } where
2018-01-24 15:38:28 +00:00
F = F×A .proj₁
A = F×A .proj₂
G = G×B .proj₁
B = G×B .proj₂
H = H×C .proj₁
C = H×C .proj₂
-- Not entirely clear what this is at this point:
2018-02-05 15:35:33 +00:00
_P⊕_ = Category._∘_ (Product.obj (:obj: ×p )) {F×A} {G×B} {H×C}
2018-01-24 15:38:28 +00:00
module _
-- NaturalTransformation F G × .Arrow A B
2018-02-05 15:35:33 +00:00
{θ×f : NaturalTransformation F G × [ A , B ]}
{η×g : NaturalTransformation G H × [ B , C ]} where
2018-01-25 11:01:37 +00:00
private
θ : Transformation F G
θ = proj₁ (proj₁ θ×f)
θNat : Natural F G θ
θNat = proj₂ (proj₁ θ×f)
2018-02-05 15:35:33 +00:00
f : [ A , B ]
2018-01-25 11:01:37 +00:00
f = proj₂ θ×f
η : Transformation G H
η = proj₁ (proj₁ η×g)
ηNat : Natural G H η
ηNat = proj₂ (proj₁ η×g)
2018-02-05 15:35:33 +00:00
g : [ B , C ]
2018-01-25 11:01:37 +00:00
g = proj₂ η×g
ηθNT : NaturalTransformation F H
2018-02-05 15:35:33 +00:00
ηθNT = Category._∘_ Fun {F} {G} {H} (η , ηNat) (θ , θNat)
2018-01-25 11:01:37 +00:00
ηθ = proj₁ ηθNT
ηθNat = proj₂ ηθNT
2018-01-24 15:38:28 +00:00
:distrib: :
𝔻 [ 𝔻 [ η C θ C ] F .func→ ( [ g f ] ) ]
𝔻 [ 𝔻 [ η C G .func→ g ] 𝔻 [ θ B F .func→ f ] ]
2018-01-24 15:38:28 +00:00
:distrib: = begin
𝔻 [ (ηθ C) F .func→ ( [ g f ]) ]
≡⟨ ηθNat ( [ g f ])
𝔻 [ H .func→ ( [ g f ]) (ηθ A) ]
≡⟨ cong (λ φ 𝔻 [ φ ηθ A ]) (H.distrib)
𝔻 [ 𝔻 [ H .func→ g H .func→ f ] (ηθ A) ]
≡⟨ sym assoc
𝔻 [ H .func→ g 𝔻 [ H .func→ f ηθ A ] ]
≡⟨ cong (λ φ 𝔻 [ H .func→ g φ ]) assoc
𝔻 [ H .func→ g 𝔻 [ 𝔻 [ H .func→ f η A ] θ A ] ]
≡⟨ cong (λ φ 𝔻 [ H .func→ g φ ]) (cong (λ φ 𝔻 [ φ θ A ]) (sym (ηNat f)))
𝔻 [ H .func→ g 𝔻 [ 𝔻 [ η B G .func→ f ] θ A ] ]
≡⟨ cong (λ φ 𝔻 [ H .func→ g φ ]) (sym assoc)
𝔻 [ H .func→ g 𝔻 [ η B 𝔻 [ G .func→ f θ A ] ] ] ≡⟨ assoc
𝔻 [ 𝔻 [ H .func→ g η B ] 𝔻 [ G .func→ f θ A ] ]
≡⟨ cong (λ φ 𝔻 [ φ 𝔻 [ G .func→ f θ A ] ]) (sym (ηNat g))
𝔻 [ 𝔻 [ η C G .func→ g ] 𝔻 [ G .func→ f θ A ] ]
≡⟨ cong (λ φ 𝔻 [ 𝔻 [ η C G .func→ g ] φ ]) (sym (θNat f))
𝔻 [ 𝔻 [ η C G .func→ g ] 𝔻 [ θ B F .func→ f ] ]
2018-01-24 15:38:28 +00:00
where
2018-01-25 11:01:37 +00:00
open IsCategory (𝔻 .isCategory)
2018-01-30 15:23:36 +00:00
open module H = IsFunctor (H .isFunctor)
2018-01-25 11:01:37 +00:00
2018-01-24 15:38:28 +00:00
:eval: : Functor ((:obj: ×p ) .Product.obj) 𝔻
:eval: = record
{ func* = :func*:
; func→ = λ {dom} {cod} :func→: {dom} {cod}
2018-01-30 15:23:36 +00:00
; isFunctor = record
{ ident = λ {o} :ident: {o}
; distrib = λ {f u n k y} :distrib: {f} {u} {n} {k} {y}
}
2018-01-24 15:38:28 +00:00
}
module _ (𝔸 : Category ) (F : Functor ((𝔸 ×p ) .Product.obj) 𝔻) where
2018-02-05 15:35:33 +00:00
open HasProducts (hasProducts {} {}) renaming (_|×|_ to parallelProduct)
2018-01-25 11:01:37 +00:00
2018-01-24 15:38:28 +00:00
postulate
transpose : Functor 𝔸 :obj:
2018-02-05 15:35:33 +00:00
eq : Cat [ :eval: (parallelProduct transpose (𝟙 Cat {o = })) ] F
-- eq : Cat [ :eval: ∘ (HasProducts._|×|_ hasProducts transpose (𝟙 Cat {o = })) ] ≡ F
-- eq' : (Cat [ :eval: ∘
-- (record { product = product } HasProducts.|×| transpose)
-- (𝟙 Cat)
-- ])
-- ≡ F
-- For some reason after `e8215b2c051062c6301abc9b3f6ec67106259758`
-- `catTranspose` makes Agda hang. catTranspose : ∃![ F~ ] (Cat [
-- :eval: (parallelProduct F~ (𝟙 Cat {o = }))] F) catTranspose =
-- transpose , eq
2018-01-24 15:38:28 +00:00
:isExponential: : IsExponential Cat 𝔻 :obj: :eval:
2018-02-05 15:35:33 +00:00
:isExponential: = {!catTranspose!}
where
open HasProducts (hasProducts {} {}) using (_|×|_)
-- :isExponential: = λ 𝔸 F transpose 𝔸 F , eq' 𝔸 F
2018-01-24 15:38:28 +00:00
-- :exponent: : Exponential (Cat ) A B
:exponent: : Exponential Cat 𝔻
:exponent: = record
{ obj = :obj:
; eval = :eval:
; isExponential = :isExponential:
}
2018-01-25 11:01:37 +00:00
hasExponentials : HasExponentials (Cat )
hasExponentials = record { exponent = :exponent: }