Andrea Vezzosi
34e633902f
Category.Product: Factor out use of arrowAreSets to shorten proofs
2018-03-30 11:06:45 +02:00
Frederik Hanghøj Iversen
432cc78821
Prove assoc and ident for funky category
2018-03-29 15:47:43 +02:00
Frederik Hanghøj Iversen
ffedb83210
Initial objects are also propositional
2018-03-29 14:31:58 +02:00
Frederik Hanghøj Iversen
52ac9b4b78
Terminal objects are propositional
2018-03-29 14:26:47 +02:00
Andrea Vezzosi
8ac6b97213
isProp (Product C A B) setup
2018-03-29 00:07:49 +02:00
Frederik Hanghøj Iversen
facd1167e0
Fix unique existential
2018-03-27 14:18:13 +02:00
Frederik Hanghøj Iversen
b7a80d0b86
Proof: Being an initial- terminal- object is a mere proposition
...
Also tries to use this to prove that being a product is a mere
proposition
2018-03-27 12:20:24 +02:00
Frederik Hanghøj Iversen
9898685491
Prove that the opposite category is a category
2018-03-26 14:11:15 +02:00
Frederik Hanghøj Iversen
d3864dbae5
Move properties about natural transformations to that module
2018-03-23 15:20:26 +01:00
Frederik Hanghøj Iversen
ef688202a2
Move identity functor laws to functor module...
...
and make progress on univalence in the functor category
2018-03-23 13:55:03 +01:00
Frederik Hanghøj Iversen
c8c61a8d03
Half-time report
2018-03-23 11:11:44 +01:00
Frederik Hanghøj Iversen
96fb1d3a3b
Formatting
2018-03-23 10:08:28 +01:00
Frederik Hanghøj Iversen
ac01b786a7
Cleanup
2018-03-22 14:27:16 +01:00
Frederik Hanghøj Iversen
ebcab2528e
Prove second inverse law for from/to-isomorphism
2018-03-22 13:49:53 +01:00
Frederik Hanghøj Iversen
0246c1b5ab
Readability
2018-03-22 12:25:12 +01:00
Frederik Hanghøj Iversen
d816ba657b
QED! Show that the category of homotopic sets are univalent.
2018-03-22 12:11:27 +01:00
Frederik Hanghøj Iversen
52ca0b6732
Merge remote-tracking branch 'Saizan/dev' into dev
2018-03-22 11:54:22 +01:00
Frederik Hanghøj Iversen
d12122ce60
Add another approach for univalence in Set
2018-03-22 11:50:07 +01:00
Andrea Vezzosi
66ab7138a6
generalized lem3 and made progress for Sets univalence
2018-03-22 10:41:38 +00:00
Frederik Hanghøj Iversen
807a0f3dcd
Slight readability improvement
2018-03-21 18:05:25 +01:00
Frederik Hanghøj Iversen
181edc0cd5
Prove step 3 in proof of unvivalence for hSet without ua
2018-03-21 17:52:32 +01:00
Frederik Hanghøj Iversen
8f67ff9f36
Use explicit parameter for hSet
2018-03-21 15:01:31 +01:00
Frederik Hanghøj Iversen
ae0ff092f8
Use prelude everywhere
2018-03-21 14:56:43 +01:00
Frederik Hanghøj Iversen
29f45d1426
Delete equality module
2018-03-21 14:47:01 +01:00
Frederik Hanghøj Iversen
183906dc8c
Define and use custom prelude
2018-03-21 14:39:56 +01:00
Frederik Hanghøj Iversen
084befbbc6
Merge remote-tracking branch 'Saizan/dev' into dev
...
From Andrea:
The problem with "h" there is that ve-re is building a square, "(qq0 j
, h)" is a fine element of the sigma type, but it does not really
connect "(g ∘ f) e" to "e" across dimension "i", in particular it does
not reduce to "e" when "i" is "i1".
2018-03-21 13:31:28 +01:00
Frederik Hanghøj Iversen
cd3514c8cf
Formatting
2018-03-21 13:25:24 +01:00
Andrea Vezzosi
ed3b3047e6
Progress on univalence for sets.
2018-03-21 12:00:47 +00:00
Frederik Hanghøj Iversen
890154a81d
Simplify qualified imports, change make-target: clean
2018-03-21 12:28:26 +01:00
Frederik Hanghøj Iversen
e98ed89db5
Make propositionality a submodule of the actual proposition
2018-03-21 12:21:47 +01:00
Frederik Hanghøj Iversen
4beb48e066
Use correct order for left- and right identity
...
Define and use helpers left- and right identity
2018-03-21 11:58:50 +01:00
Frederik Hanghøj Iversen
31257a4d97
Do not export helpers in Fun
2018-03-21 11:58:50 +01:00
Frederik Hanghøj Iversen
629115661b
Formatting in yoneda
2018-03-21 11:58:50 +01:00
Frederik Hanghøj Iversen
b6a9befd9c
Naming and formatting
2018-03-21 11:58:50 +01:00
Frederik Hanghøj Iversen
63a51fbfdc
Include modules in "everything"-module
2018-03-21 11:58:50 +01:00
Frederik Hanghøj Iversen
811a6bf58e
Make univalence a submodule of RawCategory
2018-03-21 11:58:23 +01:00
Frederik Hanghøj Iversen
b03bfb0c77
Restructure in free monad
2018-03-20 14:58:27 +01:00
Frederik Hanghøj Iversen
66cb5b363d
[WIP] Finnish all intermediate steps for univalence of hSets
2018-03-20 13:26:40 +01:00
Frederik Hanghøj Iversen
2188e690a0
Prove identity law for coercions.
2018-03-20 12:12:09 +01:00
Frederik Hanghøj Iversen
30725d71b6
[WIP] Scary goal
2018-03-20 11:58:54 +01:00
Frederik Hanghøj Iversen
32d1833d51
[WIP] A long way towards proving univalence in the category of hSets
2018-03-20 11:27:04 +01:00
Frederik Hanghøj Iversen
43563d1ad9
[WIP] Univalence for category of homotopy sets
2018-03-19 16:27:03 +01:00
Frederik Hanghøj Iversen
2058154c65
Helpers to work with isomorphisms and equivalences
2018-03-19 15:15:03 +01:00
Frederik Hanghøj Iversen
f69ab0ee62
[WIP] Univalence for the category of hSets
2018-03-19 14:08:59 +01:00
Andrea Vezzosi
f7f8953a42
Voe: Use the isomorphism directly for better computation
2018-03-15 13:39:42 +00:00
Frederik Hanghøj Iversen
438978973d
Construct isomorphism from equivalence
...
Using this somewhat round-about way of constructing an isomorphism from
an equivalence has made typechecking slower in some situations.
E.g. if you're constructing an equivalence from gradLemma and later use
that constructed equivalence to recover the isomorphism, then you
might as well have kept using those functions.
2018-03-15 12:33:00 +01:00
Frederik Hanghøj Iversen
360e2b95dd
Make parameter to monad equivalence explicit
2018-03-14 11:20:07 +01:00
Frederik Hanghøj Iversen
7aec22b30a
Expose both monad formulations qualified from Cat.Category.Monad
2018-03-14 11:00:52 +01:00
Frederik Hanghøj Iversen
6229decfb2
Merge branch 'master' into dev
2018-03-14 10:50:57 +01:00
Frederik Hanghøj Iversen
41e2d02c8d
[WIP] Prove voe §2.3
...
By Andrea
The reason you cannot use cong in [1] is that §2-fromMonad result type
depends on the input, you need a dependent version of cong:
cong-d : ∀ {ℓ} {A : Set ℓ} {ℓ'} {B : A → Set ℓ'} {x y : A}
→ (f : (x : A) → B x)
→ (eq : x ≡ y)
→ PathP (\ i → B (eq i)) (f x) (f y)
cong-d f p = λ i → f (p i)
I attach a modified Voevodsky.agda.
Notice that the definition of "t" is still highlighted in yellow,
that's because it being a homogeneous path depends on the exact
definition of lem, see the comment with the two definitional equality
constraints.
2018-03-14 10:30:42 +01:00