cat/src/Cat/Category.agda

574 lines
22 KiB
Agda
Raw Normal View History

2018-02-25 14:21:38 +00:00
-- | Univalent categories
--
-- This module defines:
--
-- Categories
-- ==========
--
-- Types
-- ------
--
-- Object, Arrow
--
-- Data
-- ----
-- identity; the identity arrow
2018-02-25 14:21:38 +00:00
-- _∘_; function composition
--
-- Laws
-- ----
--
-- associativity, identity, arrows form sets, univalence.
--
-- Lemmas
-- ------
--
-- Propositionality for all laws about the category.
2018-02-02 14:33:54 +00:00
{-# OPTIONS --allow-unsolved-metas --cubical #-}
2017-11-10 15:00:00 +00:00
module Cat.Category where
2017-11-10 15:00:00 +00:00
2018-03-21 13:39:56 +00:00
open import Cat.Prelude
import Cat.Equivalence
open Cat.Equivalence public using () renaming (Isomorphism to TypeIsomorphism)
open Cat.Equivalence
renaming (_≅_ to _≈_)
hiding (preorder≅ ; Isomorphism)
2018-04-05 08:41:56 +00:00
import Function
2018-03-22 13:27:16 +00:00
------------------
2018-02-25 14:21:38 +00:00
-- * Categories --
2018-03-22 13:27:16 +00:00
------------------
2018-02-25 14:21:38 +00:00
-- | Raw categories
--
-- This record desribes the data that a category consist of as well as some laws
-- about these. The laws defined are the types the propositions - not the
-- witnesses to them!
record RawCategory (a b : Level) : Set (lsuc (a b)) where
no-eta-equality
field
Object : Set a
Arrow : Object Object Set b
identity : {A : Object} Arrow A A
_∘_ : {A B C : Object} Arrow B C Arrow A B Arrow A C
2018-03-06 14:52:22 +00:00
infixl 10 _∘_ _>>>_
2018-02-25 14:21:38 +00:00
-- | Operations on data
domain : {a b : Object} Arrow a b Object
domain {a} _ = a
codomain : {a b : Object} Arrow a b Object
codomain {b = b} _ = b
_>>>_ : {A B C : Object} (Arrow A B) (Arrow B C) Arrow A C
f >>> g = g f
2018-02-25 14:21:38 +00:00
-- | Laws about the data
2018-03-08 00:09:40 +00:00
-- FIXME It seems counter-intuitive that the normal-form is on the
-- right-hand-side.
IsAssociative : Set (a b)
IsAssociative = {A B C D} {f : Arrow A B} {g : Arrow B C} {h : Arrow C D}
h (g f) (h g) f
IsIdentity : ({A : Object} Arrow A A) Set (a b)
IsIdentity id = {A B : Object} {f : Arrow A B}
id f f × f id f
2018-02-23 09:35:42 +00:00
ArrowsAreSets : Set (a b)
ArrowsAreSets = {A B : Object} isSet (Arrow A B)
IsInverseOf : {A B} (Arrow A B) (Arrow B A) Set b
IsInverseOf = λ f g g f identity × f g identity
Isomorphism : {A B} (f : Arrow A B) Set b
Isomorphism {A} {B} f = Σ[ g Arrow B A ] IsInverseOf f g
_≅_ : (A B : Object) Set b
_≅_ A B = Σ[ f Arrow A B ] (Isomorphism f)
module _ {A B : Object} where
Epimorphism : {X : Object } (f : Arrow A B) Set b
Epimorphism {X} f = (g₀ g₁ : Arrow B X) g₀ f g₁ f g₀ g₁
Monomorphism : {X : Object} (f : Arrow A B) Set b
Monomorphism {X} f = (g₀ g₁ : Arrow X A) f g₀ f g₁ g₀ g₁
2018-02-21 11:59:31 +00:00
IsInitial : Object Set (a b)
IsInitial I = {X : Object} isContr (Arrow I X)
IsTerminal : Object Set (a b)
2018-02-20 17:15:07 +00:00
IsTerminal T = {X : Object} isContr (Arrow X T)
2018-02-21 11:59:31 +00:00
Initial : Set (a b)
Initial = Σ Object IsInitial
Terminal : Set (a b)
2018-02-21 11:59:31 +00:00
Terminal = Σ Object IsTerminal
-- | Univalence is indexed by a raw category as well as an identity proof.
module Univalence (isIdentity : IsIdentity identity) where
2018-03-22 13:27:16 +00:00
-- | The identity isomorphism
idIso : (A : Object) A A
idIso A = identity , identity , isIdentity
2018-03-22 13:27:16 +00:00
-- | Extract an isomorphism from an equality
--
-- [HoTT §9.1.4]
2018-04-05 13:21:54 +00:00
idToIso : (A B : Object) A B A B
idToIso A B eq = transp (\ i A eq i) (idIso A)
Univalent : Set (a b)
2018-04-05 13:21:54 +00:00
Univalent = {A B : Object} isEquiv (A B) (A B) (idToIso A B)
univalenceFromIsomorphism : {A B : Object}
TypeIsomorphism (idToIso A B) isEquiv (A B) (A B) (idToIso A B)
univalenceFromIsomorphism = fromIso _ _
2018-03-22 13:27:16 +00:00
-- A perhaps more readable version of univalence:
Univalent≃ = {A B : Object} (A B) (A B)
-- | Equivalent formulation of univalence.
Univalent[Contr] : Set _
Univalent[Contr] = A isContr (Σ[ X Object ] A X)
2018-03-21 13:39:56 +00:00
-- From: Thierry Coquand <Thierry.Coquand@cse.gu.se>
-- Date: Wed, Mar 21, 2018 at 3:12 PM
--
-- This is not so straight-forward so you can assume it
postulate from[Contr] : Univalent[Contr] Univalent
propUnivalent : isProp Univalent
propUnivalent a b i = propPi (λ iso propIsContr) a b i
module _ {a b : Level} ( : RawCategory a b) where
record IsPreCategory : Set (lsuc (a b)) where
open RawCategory public
field
isAssociative : IsAssociative
isIdentity : IsIdentity identity
arrowsAreSets : ArrowsAreSets
open Univalence isIdentity public
leftIdentity : {A B : Object} {f : Arrow A B} identity f f
leftIdentity {A} {B} {f} = fst (isIdentity {A = A} {B} {f})
rightIdentity : {A B : Object} {f : Arrow A B} f identity f
rightIdentity {A} {B} {f} = snd (isIdentity {A = A} {B} {f})
------------
-- Lemmas --
------------
-- | Relation between iso- epi- and mono- morphisms.
module _ {A B : Object} {X : Object} (f : Arrow A B) where
iso→epi : Isomorphism f Epimorphism {X = X} f
iso→epi (f- , left-inv , right-inv) g₀ g₁ eq = begin
g₀ ≡⟨ sym rightIdentity
g₀ identity ≡⟨ cong (_∘_ g₀) (sym right-inv)
g₀ (f f-) ≡⟨ isAssociative
(g₀ f) f- ≡⟨ cong (λ φ φ f-) eq
(g₁ f) f- ≡⟨ sym isAssociative
g₁ (f f-) ≡⟨ cong (_∘_ g₁) right-inv
g₁ identity ≡⟨ rightIdentity
g₁
iso→mono : Isomorphism f Monomorphism {X = X} f
iso→mono (f- , left-inv , right-inv) g₀ g₁ eq =
begin
g₀ ≡⟨ sym leftIdentity
identity g₀ ≡⟨ cong (λ φ φ g₀) (sym left-inv)
(f- f) g₀ ≡⟨ sym isAssociative
f- (f g₀) ≡⟨ cong (_∘_ f-) eq
f- (f g₁) ≡⟨ isAssociative
(f- f) g₁ ≡⟨ cong (λ φ φ g₁) left-inv
identity g₁ ≡⟨ leftIdentity
g₁
iso→epi×mono : Isomorphism f Epimorphism {X = X} f × Monomorphism {X = X} f
iso→epi×mono iso = iso→epi iso , iso→mono iso
propIsAssociative : isProp IsAssociative
propIsAssociative = propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl (λ _ propPiImpl λ _ arrowsAreSets _ _))))))
propIsIdentity : {f : {A} Arrow A A} isProp (IsIdentity f)
propIsIdentity {id} = propPiImpl (λ _ propPiImpl λ _ propPiImpl (λ f
propSig (arrowsAreSets (id f) f) λ _ arrowsAreSets (f id) f))
propArrowIsSet : isProp ( {A B} isSet (Arrow A B))
propArrowIsSet = propPiImpl λ _ propPiImpl (λ _ isSetIsProp)
propIsInverseOf : {A B f g} isProp (IsInverseOf {A} {B} f g)
propIsInverseOf = propSig (arrowsAreSets _ _) (λ _ arrowsAreSets _ _)
module _ {A B : Object} {f : Arrow A B} where
isoIsProp : isProp (Isomorphism f)
isoIsProp a@(g , η , ε) a'@(g' , η' , ε') =
lemSig (λ g propIsInverseOf) a a' geq
where
geq : g g'
geq = begin
g ≡⟨ sym rightIdentity
g identity ≡⟨ cong (λ φ g φ) (sym ε')
g (f g') ≡⟨ isAssociative
(g f) g' ≡⟨ cong (λ φ φ g') η
identity g' ≡⟨ leftIdentity
g'
propIsInitial : I isProp (IsInitial I)
propIsInitial I x y i {X} = res X i
2018-03-29 12:26:47 +00:00
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow I X) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
propIsTerminal : T isProp (IsTerminal T)
propIsTerminal T x y i {X} = res X i
2018-03-29 12:31:03 +00:00
where
module _ (X : Object) where
open Σ (x {X}) renaming (fst to fx ; snd to cx)
open Σ (y {X}) renaming (fst to fy ; snd to cy)
fp : fx fy
fp = cx fy
prop : (x : Arrow X T) isProp ( f x f)
prop x = propPi (λ y arrowsAreSets x y)
cp : (λ i f fp i f) [ cx cy ]
cp = lemPropF prop fp
res : (fx , cx) (fy , cy)
res i = fp i , cp i
module _ where
private
trans≅ : Transitive _≅_
trans≅ (f , f~ , f-inv) (g , g~ , g-inv)
= g f
, f~ g~
, ( begin
(f~ g~) (g f) ≡⟨ isAssociative
(f~ g~) g f ≡⟨ cong (λ φ φ f) (sym isAssociative)
f~ (g~ g) f ≡⟨ cong (λ φ f~ φ f) (fst g-inv)
f~ identity f ≡⟨ cong (λ φ φ f) rightIdentity
f~ f ≡⟨ fst f-inv
identity
)
, ( begin
g f (f~ g~) ≡⟨ isAssociative
g f f~ g~ ≡⟨ cong (λ φ φ g~) (sym isAssociative)
g (f f~) g~ ≡⟨ cong (λ φ g φ g~) (snd f-inv)
g identity g~ ≡⟨ cong (λ φ φ g~) rightIdentity
g g~ ≡⟨ snd g-inv
identity
)
isPreorder : IsPreorder _≅_
isPreorder = record { isEquivalence = equalityIsEquivalence ; reflexive = idToIso _ _ ; trans = trans≅ }
preorder≅ : Preorder _ _ _
preorder≅ = record { Carrier = Object ; _≈_ = _≡_ ; __ = _≅_ ; isPreorder = isPreorder }
record PreCategory : Set (lsuc (a b)) where
field
isPreCategory : IsPreCategory
open IsPreCategory isPreCategory public
-- Definition 9.6.1 in [HoTT]
record StrictCategory : Set (lsuc (a b)) where
field
preCategory : PreCategory
open PreCategory preCategory
field
objectsAreSets : isSet Object
record IsCategory : Set (lsuc (a b)) where
field
isPreCategory : IsPreCategory
open IsPreCategory isPreCategory public
field
univalent : Univalent
-- | The formulation of univalence expressed with _≃_ is trivially admissable -
-- just "forget" the equivalence.
univalent≃ : Univalent≃
univalent≃ = _ , univalent
module _ {A B : Object} where
iso-to-id : (A B) (A B)
2018-04-06 16:27:24 +00:00
iso-to-id = fst (toIso _ _ univalent)
2018-04-09 16:02:39 +00:00
asTypeIso : TypeIsomorphism (idToIso A B)
asTypeIso = toIso _ _ univalent
-- | All projections are propositions.
module Propositionality where
-- | Terminal objects are propositional - a.k.a uniqueness of terminal
-- | objects.
--
-- Having two terminal objects induces an isomorphism between them - and
-- because of univalence this is equivalent to equality.
propTerminal : isProp Terminal
propTerminal Xt Yt = res
where
open Σ Xt renaming (fst to X ; snd to Xit)
open Σ Yt renaming (fst to Y ; snd to Yit)
open Σ (Xit {Y}) renaming (fst to Y→X) using ()
open Σ (Yit {X}) renaming (fst to X→Y) using ()
-- Need to show `left` and `right`, what we know is that the arrows are
-- unique. Well, I know that if I compose these two arrows they must give
-- the identity, since also the identity is the unique such arrow (by X
-- and Y both being terminal objects.)
Xprop : isProp (Arrow X X)
Xprop f g = trans (sym (snd Xit f)) (snd Xit g)
Yprop : isProp (Arrow Y Y)
Yprop f g = trans (sym (snd Yit f)) (snd Yit g)
left : Y→X X→Y identity
left = Xprop _ _
right : X→Y Y→X identity
right = Yprop _ _
iso : X Y
iso = X→Y , Y→X , left , right
p0 : X Y
2018-04-09 16:02:39 +00:00
p0 = iso-to-id iso
p1 : (λ i IsTerminal (p0 i)) [ Xit Yit ]
p1 = lemPropF propIsTerminal p0
res : Xt Yt
res i = p0 i , p1 i
-- Merely the dual of the above statement.
propInitial : isProp Initial
propInitial Xi Yi = res
where
open Σ Xi renaming (fst to X ; snd to Xii)
open Σ Yi renaming (fst to Y ; snd to Yii)
open Σ (Xii {Y}) renaming (fst to Y→X) using ()
open Σ (Yii {X}) renaming (fst to X→Y) using ()
-- Need to show `left` and `right`, what we know is that the arrows are
-- unique. Well, I know that if I compose these two arrows they must give
-- the identity, since also the identity is the unique such arrow (by X
-- and Y both being terminal objects.)
Xprop : isProp (Arrow X X)
Xprop f g = trans (sym (snd Xii f)) (snd Xii g)
Yprop : isProp (Arrow Y Y)
Yprop f g = trans (sym (snd Yii f)) (snd Yii g)
left : Y→X X→Y identity
left = Yprop _ _
right : X→Y Y→X identity
right = Xprop _ _
iso : X Y
iso = Y→X , X→Y , right , left
res : Xi Yi
2018-04-09 16:02:39 +00:00
res = lemSig propIsInitial _ _ (iso-to-id iso)
module _ {a b : Level} ( : RawCategory a b) where
open RawCategory
open Univalence
2018-02-20 15:42:56 +00:00
private
2018-04-05 12:37:25 +00:00
module _ (x y : IsPreCategory ) where
module x = IsPreCategory x
module y = IsPreCategory y
-- In a few places I use the result of propositionality of the various
-- projections of `IsCategory` - Here I arbitrarily chose to use this
-- result from `x : IsCategory C`. I don't know which (if any) possibly
-- adverse effects this may have.
-- module Prop = X.Propositionality
propIsPreCategory : x y
IsPreCategory.isAssociative (propIsPreCategory i)
= x.propIsAssociative x.isAssociative y.isAssociative i
IsPreCategory.isIdentity (propIsPreCategory i)
= x.propIsIdentity x.isIdentity y.isIdentity i
IsPreCategory.arrowsAreSets (propIsPreCategory i)
= x.propArrowIsSet x.arrowsAreSets y.arrowsAreSets i
module _ (x y : IsCategory ) where
2018-02-20 15:42:56 +00:00
module X = IsCategory x
module Y = IsCategory y
2018-02-20 16:59:48 +00:00
-- In a few places I use the result of propositionality of the various
-- projections of `IsCategory` - Here I arbitrarily chose to use this
2018-02-20 16:59:48 +00:00
-- result from `x : IsCategory C`. I don't know which (if any) possibly
-- adverse effects this may have.
module Prop = X.Propositionality
isIdentity= : (λ _ IsIdentity identity) [ X.isIdentity Y.isIdentity ]
isIdentity= = X.propIsIdentity X.isIdentity Y.isIdentity
isPreCategory= : X.isPreCategory Y.isPreCategory
isPreCategory= = propIsPreCategory X.isPreCategory Y.isPreCategory
private
p = cong IsPreCategory.isIdentity isPreCategory=
univalent= : (λ i Univalent (p i))
[ X.univalent Y.univalent ]
univalent= = lemPropF
{A = IsIdentity identity}
{B = Univalent}
propUnivalent
{a0 = X.isIdentity}
{a1 = Y.isIdentity}
p
done : x y
IsCategory.isPreCategory (done i) = isPreCategory= i
IsCategory.univalent (done i) = univalent= i
propIsCategory : isProp (IsCategory )
2018-02-20 15:42:56 +00:00
propIsCategory = done
2018-04-06 16:27:24 +00:00
2018-02-25 14:21:38 +00:00
-- | Univalent categories
--
-- Just bundles up the data with witnesses inhabiting the propositions.
2018-04-06 16:27:24 +00:00
-- Question: Should I remove the type `Category`?
2018-02-05 13:47:15 +00:00
record Category (a b : Level) : Set (lsuc (a b)) where
field
raw : RawCategory a b
2018-02-05 13:47:15 +00:00
{{isCategory}} : IsCategory raw
2018-02-21 12:37:07 +00:00
open IsCategory isCategory public
-- The fact that being a category is a mere proposition gives rise to this
-- equality principle for categories.
module _ {a b : Level} { 𝔻 : Category a b} where
private
module = Category
module 𝔻 = Category 𝔻
module _ (rawEq : .raw 𝔻.raw) where
private
isCategoryEq : (λ i IsCategory (rawEq i)) [ .isCategory 𝔻.isCategory ]
isCategoryEq = lemPropF {A = RawCategory _ _} {B = IsCategory} propIsCategory rawEq
Category≡ : 𝔻
2018-04-06 16:27:24 +00:00
Category.raw (Category≡ i) = rawEq i
Category.isCategory (Category≡ i) = isCategoryEq i
2018-03-08 00:09:40 +00:00
2018-02-25 14:21:38 +00:00
-- | Syntax for arrows- and composition in a given category.
2018-02-21 12:37:07 +00:00
module _ {a b : Level} ( : Category a b) where
open Category
_[_,_] : (A : Object) (B : Object) Set b
2018-02-20 15:25:49 +00:00
_[_,_] = Arrow
2017-11-10 15:00:00 +00:00
2018-02-20 15:25:49 +00:00
_[_∘_] : {A B C : Object} (g : Arrow B C) (f : Arrow A B) Arrow A C
_[_∘_] = _∘_
2017-11-10 15:00:00 +00:00
2018-02-25 14:21:38 +00:00
-- | The opposite category
--
-- The opposite category is the category where the direction of the arrows are
-- flipped.
module Opposite {a b : Level} where
module _ ( : Category a b) where
private
2018-04-05 12:37:25 +00:00
module _ where
module = Category
opRaw : RawCategory a b
RawCategory.Object opRaw = .Object
RawCategory.Arrow opRaw = Function.flip .Arrow
RawCategory.identity opRaw = .identity
RawCategory._∘_ opRaw = ._>>>_
2018-04-05 12:37:25 +00:00
open RawCategory opRaw
2018-04-05 12:37:25 +00:00
isPreCategory : IsPreCategory opRaw
IsPreCategory.isAssociative isPreCategory = sym .isAssociative
IsPreCategory.isIdentity isPreCategory = swap .isIdentity
2018-04-05 12:37:25 +00:00
IsPreCategory.arrowsAreSets isPreCategory = .arrowsAreSets
2018-04-05 12:37:25 +00:00
open IsPreCategory isPreCategory
module _ {A B : .Object} where
k : TypeIsomorphism (.idToIso A B)
2018-04-06 16:27:24 +00:00
k = toIso _ _ .univalent
2018-04-09 16:02:39 +00:00
open Σ k renaming (fst to η ; snd to inv-η)
open AreInverses inv-η
_⊙_ = Function._∘_
infixr 9 _⊙_
2018-04-09 16:02:39 +00:00
genericly : {a b c : Level} {a : Set a} {b : Set b} {c : Set c}
a × b × c b × a × c
genericly (a , b , c) = (b , a , c)
shuffle : A B A .≅ B
shuffle (f , g , inv) = g , f , inv
2018-04-09 16:02:39 +00:00
shuffle~ : A .≅ B A B
shuffle~ (f , g , inv) = g , f , inv
-- Shouldn't be necessary to use `arrowsAreSets` here, but we have it,
-- so why not?
2018-04-09 16:02:39 +00:00
lem : (p : A B) idToIso A B p shuffle~ (.idToIso A B p)
lem p = Σ≡ refl (Σ≡ refl (Σ≡ (.arrowsAreSets _ _ l-l r-l) (.arrowsAreSets _ _ l-r r-r)))
where
2018-04-05 13:21:54 +00:00
l = idToIso A B p
2018-04-09 16:02:39 +00:00
r = shuffle~ (.idToIso A B p)
2018-04-05 08:41:56 +00:00
open Σ l renaming (fst to l-obv ; snd to l-areInv)
open Σ l-areInv renaming (fst to l-invs ; snd to l-iso)
open Σ l-iso renaming (fst to l-l ; snd to l-r)
open Σ r renaming (fst to r-obv ; snd to r-areInv)
open Σ r-areInv renaming (fst to r-invs ; snd to r-iso)
open Σ r-iso renaming (fst to r-l ; snd to r-r)
2018-04-09 16:02:39 +00:00
ζ : A B A B
ζ = η shuffle
2018-04-05 13:21:54 +00:00
-- inv : AreInverses (.idToIso A B) f
2018-04-09 16:02:39 +00:00
inv-ζ : AreInverses (idToIso A B) ζ
2018-04-05 13:21:54 +00:00
-- recto-verso : .idToIso A B ∘ f ≡ idFun (A .≅ B)
2018-04-09 16:02:39 +00:00
inv-ζ = record
{ verso-recto = funExt (λ x begin
2018-04-09 16:02:39 +00:00
(ζ idToIso A B) x ≡⟨⟩
(η shuffle idToIso A B) x ≡⟨ cong (λ φ φ x) (cong (λ φ η shuffle φ) (funExt lem))
(η shuffle shuffle~ .idToIso A B) x ≡⟨⟩
(η .idToIso A B) x ≡⟨ (λ i verso-recto i x)
x )
; recto-verso = funExt (λ x begin
2018-04-09 16:02:39 +00:00
(idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ φ η shuffle) (funExt lem))
(shuffle~ .idToIso A B η shuffle) x ≡⟨ cong (λ φ φ x) (cong (λ φ shuffle~ φ shuffle) recto-verso)
(shuffle~ shuffle) x ≡⟨⟩
x )
}
h : TypeIsomorphism (idToIso A B)
2018-04-09 16:02:39 +00:00
h = ζ , inv-ζ
isCategory : IsCategory opRaw
2018-04-05 12:37:25 +00:00
IsCategory.isPreCategory isCategory = isPreCategory
2018-04-09 16:02:39 +00:00
IsCategory.univalent isCategory = univalenceFromIsomorphism h
2018-02-25 14:21:38 +00:00
opposite : Category a b
Category.raw opposite = opRaw
Category.isCategory opposite = isCategory
2018-02-25 14:21:38 +00:00
-- As demonstrated here a side-effect of having no-eta-equality on constructors
-- means that we need to pick things apart to show that things are indeed
-- definitionally equal. I.e; a thing that would normally be provable in one
-- line now takes 13!! Admittedly it's a simple proof.
module _ { : Category a b} where
open Category
private
-- Since they really are definitionally equal we just need to pick apart
-- the data-type.
rawInv : Category.raw (opposite (opposite )) raw
RawCategory.Object (rawInv _) = Object
RawCategory.Arrow (rawInv _) = Arrow
RawCategory.identity (rawInv _) = identity
2018-02-25 14:21:38 +00:00
RawCategory._∘_ (rawInv _) = _∘_
oppositeIsInvolution : opposite (opposite )
2018-03-08 00:09:40 +00:00
oppositeIsInvolution = Category≡ rawInv
2018-02-25 14:21:38 +00:00
2018-02-25 14:23:33 +00:00
open Opposite public